W aplikacjach Internetu Rzeczy rośnie popularność przetwarzania brzegowego - Edge computing, sztucznej inteligencji - AI oraz uczenia maszynowego - Machine Learning. Technologie te wyewoluowały z fazy badań i prototypów i są obecnie wdrażane w praktycznych zastosowaniach w wielu różnych branżach ma całym świecie. Symbiotyczny charakter obliczeń brzegowych i sztucznej inteligencji jest szczególnie interesujący, ponieważ AI wymaga niezwykle szybkiego przetwarzania danych, które umożliwia przetwarzanie brzegowe, tymczasem sztuczna inteligencja umożliwia wyższą wydajność zasobów obliczeniowych i inteligencję na krawędzi.
W tym artykule przyjrzymy się przetwarzaniu brzegowemu (EC), sztucznej inteligencji (AI) i uczeniu maszynowemu (ML) oraz temu, jak to połączenie przekształca infrastrukturę sieciową, umożliwiając nowe możliwości zastosowań i tworząc nową generację urządzeń i rozwiązań IoT.
Jedną z głównych zalet AI na krawędzi jest jej szybkość. Każde zadanie lub czynność może nastąpić szybciej, jeśli dane nie muszą być przesyłane tam i z powrotem do przetwarzania. Inną zaletą jest możliwość wykrywania problemów poprzez integrację inteligentnych urządzeń i funkcji analityki, aby wdrożyć inteligencję na krawędzi.
Przetwarzanie brzegowe jest bezpieczne, gdy jest opracowywane z bezpiecznymi rozwiązaniami wbudowanymi, takimi jak chociażby moduły Digi ConnectCore i.MX8.
W przypadku przetwarzania brzegowego większość danych jest przetwarzana lokalnie. Ryzyko, że dane te zostaną naruszone, jest mniejsze, niż gdyby były wysyłane do centrum danych, przechowywane przez nieznany czas, przetwarzane i wysyłane z powrotem do urządzenia. Jeśli urządzenie brzegowe i sieć lokalna, z którą łączy się urządzenie brzegowe, są zabezpieczone i dobrze chronione przez zaporę, dane są bezpieczne.
Jednak jeśli chodzi o miejsca, w których bezpieczeństwo może zostać naruszone, należy wziąć pod uwagę kilka czynników.
Według IoT Business News: „Każde 100 mil przesyłu danych traci prędkość o około 0,82 milisekundy”. To może szybko przyczynić się do dużego opóźnienia. Przetwarzanie brzegowe z obsługą AI rozwiązuje ten problem. Opóźnienie nie istnieje, ponieważ całe przetwarzanie odbywa się na miejscu w urządzeniu, ewentualnie w przypadkach, gdy lokalne przetwarzanie nie wystarczy, sztuczna inteligencja może zdecydować o wysłaniu odpowiednich informacji do centrum danych, zachowując nieistotne dane lokalnie.
Przegląd przeprowadzony przez firmę Gartner wykazał, że od 2018 r. tylko 10% wszystkich danych było przetwarzanych na brzegu sieci, jednak spodziewa się, że do 2025 r. 75% całego przetwarzania będzie odbywać się na krawędzi. To ogromna zmiana, którą umożliwia coraz bardziej wydajny sprzęt i inteligentne systemy sztucznej inteligencji, które mogą przetwarzać informacje, komunikować się w sieci i podejmować lokalne decyzje w ułamku sekundy, szybciej niż kiedykolwiek wcześniej.
Co więcej, mając do dyspozycji sieć 5G, możliwości tworzenia i wdrażania szybkich aplikacji o niewielkich opóźnieniach, które wymagają przesyłania danych w ułamkach sekundy, jesteśmy u progu pełnego wykorzystania sztucznej inteligencji i obliczeń brzegowych.
Prawa autorskie: Digi International, Tłumaczenie: Gamma Sp. z o.o.