Dodano: wtorek, 09 lutego 2021r. Producent: XPPower

Projektowanie zasilaczy pod kątem niezawodności w zastosowaniach wysokonapięciowych

Długotrwała niezawodność i płynna praca w trudnych warunkach pracy to święty Graal projektowania zasilaczy wysokiego napięcia. W przypadku dzisiejszych kompaktowych i zminiaturyzowanych zasilaczy proces projektowania i produkcji jest jeszcze trudniejszy, wymagający rygorystycznej wiedzy i precyzji. Stawka jest wysoka, jeśli produkt końcowy nie spełnia tych wymagających standardów.

Wysokie napięcie jest jak zwierzę w klatce - nigdy nie przestaje próbować uciec.

Oswajanie i kontrolowanie tego zjawiska jest zadaniem inżyniera wysokiego napięcia lub fizyka, którzy mają do dyspozycji szereg systemów i materiałów izolacyjnych. Kluczem jest wybranie i określenie właściwych, aby uniknąć awarii i niepowodzeń w rzeczywistej pracy.

Wiemy o tym, że materiały są albo przewodnikami, albo izolatorami. Również to, że powietrze jest izolatorem. Ale błyskawica udowadnia, że powietrze nie zawsze jest izolatorem... to skomplikowane. Witamy w świecie wysokiego napięcia!

6 wad konstrukcyjnych, których nie znajdziesz w wysokiej jakości zasilaczu

Projektowanie i budowa zasilacza wysokiego napięcia, który przetrwa lata dłużej, jest wymagającą sztuką. Oto sześć pułapek, których mają unikać zasilacze dużego kalibru.

  1. 1) Źle dobrana izolacja

    Aby osiągnąć niezawodność, należy wziąć pod uwagę cykle termiczne, które mogą wystąpić w zasilaczu. Zmiany temperatury mogą uszkodzić materiały izolacyjne. Materiały te muszą być kompatybilne, mieć podobne współczynniki rozszerzalności cieplnej i odporność na naprężenia mechaniczne.

  2. 2) Zwykłe traktowanie izolacji

    Słaba przyczepność, kruchość spowodowana starzeniem się w wyniku utraty plastyfikatorów, nadmierne wahania temperatury, ekspozycja na promieniowanie UV, koronę, ozon, oleje mineralne oraz agresywne środki czyszczące i rozpuszczalniki PWB mogą prowadzić do przedwczesnej awarii z powodu uszkodzenia izolacji. Uszkodzenie może nastąpić podczas produkcji lub późniejszej eksploatacji.

  3. 3) Prądy upływu

    Połączenie właściwości materiału, czynników środowiskowych i projektu produktu może powodować nieplanowane skutki uboczne. Prądy upływowe mogą z czasem wzrosnąć: ostatecznie może to spowodować twardy łuk i katastrofalną awarię. Nadmierne prądy upływowe mogą powodować błędy w obwodach sprzężenia zwrotnego o wysokiej impedancji, powodując dryft napięcia i problemy ze stabilnością w czasie i przy zmianach temperatury.

  4. 4) Absorpcja wilgoci

    Podłoża FR4 PWB mogą być szczególnie wrażliwe na zanieczyszczenia i wchłoniętą wilgoć, co obniża temperaturę zeszklenia (Tg) FR4. Może to spowodować, że zespół będzie podatny na uszkodzenia w dynamicznych warunkach termicznych.

  5. 5) Błędy procesu produkcyjnego

    Zanieczyszczenia, nieprawidłowe wypełniacze lub niepełne utwardzenie w systemach hermetyzacji mogą powodować nadmiernie wysokie prądy upływowe, które są nieliniowe i zmienne w czasie i temperaturze, potencjalnie destabilizując system wysokiego napięcia. Obwody wysokiego napięcia są szczególnie podatne na migrację elektrochemiczną.

  6. 6) Tworzenie włókien i dendrytów

    Wilgoć może prowadzić do korozji jonowej, tworząc przewodzące włókna. Wzrost dendrytu może nastąpić z powodu redystrybucji jonów metali. Naprężenia wysokonapięciowe przyspieszają te procesy elektrochemiczne (chociaż wibrysy mogą tworzyć się bez obecności pola elektromagnetycznego). Mikrostruktury krystaliczne powstałe w wyniku migracji jonów tworzą bardzo wysokie gradienty napięcia i natężenia pola elektrycznego, co może prowadzić do przedwczesnego przebicia między węzłami napięcia.

Podsumowując powyższe, aby zapewnić niezawodną, długotrwałą wydajność w krytycznych zastosowaniach, należy upewnić się, że zasilacze wysokiego napięcia są zaprojektowane i zbudowane z myślą o płynnej i niezawodnej pracy nawet w trudnych warunkach.

Właściwy projekt i kontrola produkcji zasilaczy wysokiego napięcia mają kluczowe znaczenie, a dla trwałości i stałej wydajności muszą one przekraczać udokumentowane standardy branżowe.

Krytyczny charakter urządzeń zasilających wymaga wysokiej jakości, niezawodnych i bezpiecznych produktów. XP Power konsekwentne dostarcza produkty spełniające te rygorystyczne kryteria. Fabryki XP Power posiadają certyfikat medycznego systemu jakości produkcji ISO13485, a wszystkie produkty projektowane są zgodnie z rygorystycznymi normami, a także przechodzą szeroko zakrojone testy. XP Power stosuje DFMEA (analiza skutków awarii projektu), PFMEA (analiza skutków awarii procesu) i ISO14971 (zarządzanie ryzykiem dla wyrobów medycznych), aby zapewnić, że produkty są tak niezawodne i bezpieczne, jak do tylko możliwe.

Prawa autorskie: XP Power, Tłumaczenie: Gamma Sp. z o.o.

Polecane produkty

Zasilacz AC/DC zewnętrzny 40W 12V/3.33A
145.22 zł
178.62 zł (brutto)
Dostępność: 92

Progi cenowe

(brutto)(netto)
1 +178.62 zł 145.22 zł
10 + 167.46 zł 136.14 zł
50 + 156.29 zł 127.07 zł
Zasilacz AC/DC zabudowany 10W 5V/2A
82.58 zł
101.57 zł (brutto)
Dostępność: 40

Progi cenowe

(brutto)(netto)
1 +101.57 zł 82.58 zł
10 + 95.23 zł 77.42 zł
50 + 88.88 zł 72.26 zł
Konwerter DC/DC 1W 24V/5V 200mA
9.48 zł
11.66 zł (brutto)
Dostępność: 74

Progi cenowe

(brutto)(netto)
1 +11.66 zł 9.48 zł
10 + 10.93 zł 8.89 zł
100 + 10.20 zł 8.29 zł
Digi ConnectCore for i.MX6UL-2 moduł SoM, 528MHz, 256MB, 2x Ethernet, Wi-Fi, BT 4.2
396.64 zł
487.87 zł (brutto)
Dostępność: 133
Digi ConnectCore for i.MX6UL-2 moduł SoM, 528MHz, 256MB Flash/DDR3, 2x Ethernet
341.55 zł
420.11 zł (brutto)
Dostępność: 50

Pozostałe aktualności:

GNSSL125182530S kompaktowa, trójpasmowa aktywna antena GNSS firmy Pulse Electronics (YAGEO Group)

GNSSL125182530S kompaktowa, trójpasmowa aktywna antena GNSS firmy Pulse...

Aktywna wewnętrzna antena GNSS GNSSL125182530S firmy Pulse Electronics należącej YAGEO Group to kompaktowe, wydajne...

poniedziałek, 19 stycznia, 2026 Więcej

SST i UMC ogłaszają natychmiastową dostępność 28nm pamięci SuperFlash® Gen 4 z kwalifikacją AEC Q-100 Automotive Grade 1

SST i UMC ogłaszają natychmiastową dostępność 28nm pamięci SuperFlash®...

Silicon Storage Technology® (SST®), spółka zależna Microchip Technology Inc. oraz United Microelectronics...

poniedziałek, 19 stycznia, 2026 Więcej

Moduł SOM Digi ConnectCore 95 integruje chmurę, zabezpieczenia i usługi AI/ML dla aplikacji przemysłowych

Moduł SOM Digi ConnectCore 95 integruje chmurę, zabezpieczenia i usługi...

Digi ConnectCore 95, oparty na procesorze aplikacyjnym NXP i.MX 95, to wydajna bezprzewodowa platforma systemowa...

środa, 14 stycznia, 2026 Więcej

Microchip Technology wprowadza na rynek plastikowe tłumiki przepięć TVS o jakości wojskowej do zastosowań w lotnictwie i obronności

Microchip Technology wprowadza na rynek plastikowe tłumiki przepięć TVS...

Firma Microchip Technology wprowadza na rynek rodziny niehermetycznych plastikowych tłumików przepięć (TVS) JANPTX,...

środa, 14 stycznia, 2026 Więcej

Wysokiej niezawodności hermetyczne tranzystory firmy Microchip Technology dla aplikacji lotniczych, kosmicznych oraz obronnych

Wysokiej niezawodności hermetyczne tranzystory firmy Microchip...

Zapotrzebowanie na komponenty o wysokiej niezawodności w lotnictwie i obronności nigdy nie było większe. W ostatnich...

wtorek, 13 stycznia, 2026 Więcej

Microchip udostępnia oprogramowanie układowe dla kontrolerów wbudowanych MEC1723 współpracujących z superkomputerem osobistym NVIDIA DGX Spark

Microchip udostępnia oprogramowanie układowe dla kontrolerów wbudowanych...

Firma Microchip Technology ogłosiła wydanie specjalnie zaprojektowanego oprogramowania układowego dla swojego...

poniedziałek, 12 stycznia, 2026 Więcej