Dodano: wtorek, 04 marca 2025r. Producent: Microchip

Zrozumienie błędów pomiaru wzmacniacza w pomiarze prądu opartym na boczniku

Wzmacniacze wykrywające prąd na bazie bocznika są stosowane w różnych zastosowaniach do pomiaru prądu przepływającego przez precyzyjny rezystor bocznikowy bez przerywania obwodu. Działają poprzez pomiar spadku napięcia na rezystorze bocznikowym umieszczonym szeregowo z obciążeniem. Następnie wzmacniacz wykrywający prąd wzmacnia ten niewielki spadek napięcia do użytecznego poziomu w celu dalszego przetwarzania.

Konieczność dokładnego pomiaru prądu jest krytyczna w wielu zastosowaniach. Niektóre typowe przypadki użycia wykrywania prądu na bazie bocznika obejmują m.in.

  • Zarządzanie energią: Monitorowanie i kontrolowanie zużycia energii w systemach, takich jak zasilacze, ładowarki akumulatorów i systemy zarządzania energią.
  • Monitorowanie akumulatorów: Pomiar prądów ładowania i rozładowywania w akumulatorach w celu oszacowania stanu naładowania i kondycji akumulatorów.
  • Sterowanie silnikiem: Wykrywanie prądu w napędach silników w celu zapewnienia informacji zwrotnej dla algorytmów sterowania w zastosowaniach, takich jak pojazdy elektryczne, automatyka przemysłowa i robotyka.
  • Zabezpieczenie nadprądowe: Wykrywanie stanów nadprądowych w celu uruchomienia środków ochronnych w systemach zasilania, zapobiegając uszkodzeniom elementów obwodu.
  • Wykrywanie obciążenia: Określanie obecności lub braku obciążenia lub zmian impedancji obciążenia, co może mieć kluczowe znaczenie w systemach, takich jak zasilacze i systemy oświetleniowe.
  • Systemy samochodowe: Monitorowanie prądów w samochodowych systemach elektrycznych do zastosowań, takich jak sterowanie wtryskiem paliwa, wspomaganie kierownicy i zarządzanie akumulatorem.
  • Falowniki solarne: Pomiar prądu wytwarzanego przez panele słoneczne w celu maksymalizacji śledzenia punktu mocy i zapewnienia wydajnej konwersji energii.
  • Urządzenia przenośne: Integracja z systemami zarządzania energią smartfonów, laptopów i tabletów w celu optymalizacji żywotności baterii i zapewnienia bezpiecznego ładowania i rozładowywania.
  • Telekomunikacja: Stosowane w systemach zasilania telekomunikacyjnego do monitorowania prądu we wzmacniaczach mocy, zapewniając niezawodną pracę infrastruktury komunikacyjnej.
  • Wykrywanie usterek: Identyfikowanie anomalii obwodów poprzez wykrywanie nieoczekiwanego przepływu prądu, który może wskazywać na zwarcia lub awarie podzespołów.

Kluczowym podzespołem obwodu wykrywania prądu jest rezystor bocznikowy, który zamienia przepływający przez niego prąd na proporcjonalny spadek napięcia. Prawo Ohma mówi, że spadek napięcia na rezystorze jest równy iloczynowi prądu i wartości rezystora. Tradycyjnie rezystory bocznikowe o wyższej wartości były używane do tworzenia większego spadku napięcia, co ułatwiało pomiar małych prądów z większą dokładnością. Jednak takie podejście ma kilka wad:

  • Strata mocy: Większa rezystancja powoduje większe rozproszenie mocy, co może być szkodliwe w zastosowaniach wrażliwych na moc.
  • Generowanie ciepła: Większa strata mocy powoduje wydzielanie ciepła, co może mieć wpływ na otaczające komponenty i ogólną niezawodność systemu.
  • Koszt i rozmiar: Rezystory o wysokiej precyzji i dużej mocy są zazwyczaj droższe i większe, co może być problemem w przypadku kompaktowych konstrukcji.

Wybór odpowiedniego wzmacniacza wykrywającego prąd ma kluczowe znaczenie dla umożliwienia dokładnego pomiaru, szczególnie w przypadku stosowania rezystora bocznikowego o mniejszej wartości. W następnej sekcji omówiono typowe źródła błędów i krytyczne specyfikacje wzmacniaczy wykrywających prąd.

Napięcie przesunięcia wprowadza błąd bazowy, który może znacząco wpłynąć na pomiary niskiego napięcia, co wymaga użycia rezystorów bocznikowych o wyższej wartości w celu złagodzenia jego wpływu. Jednak takie podejście może prowadzić do zwiększonej utraty mocy, generowania ciepła i wyższych kosztów. Tłumienie sygnału wspólnego jest niezbędne do filtrowania szumów, które mogą zniekształcać pomiar, a wysoki współczynnik CMRR jest kluczowy dla utrzymania dokładności w środowiskach o dużym poziomie szumów. Prądy polaryzacji wejściowej mogą stać się czynnikiem, jeśli do pinów wejściowych wzmacniacza zostaną dodane rezystory szeregowe. Dokładność wzmocnienia zapewnia, że ​​napięcie wyjściowe prawidłowo reprezentuje prąd płynący przez rezystor bocznikowy, a wszelkie odchylenia mogą prowadzić do nieprawidłowych odczytów prądu.

Wykrywanie prądu na podstawie bocznika to krytyczna technika stosowana w szerokim zakresie zastosowań, od zarządzania energią i monitorowania baterii po sterowanie silnikiem i wykrywanie usterek. Dokładność tych pomiarów zależy od wydajności wzmacniacza wykrywającego prąd. Kilka źródeł błędów wzmacniacza może mieć wpływ na dokładność pomiarów prądu, w tym napięcie przesunięcia, tłumienie sygnału wspólnego, prąd polaryzacji i dokładność wzmocnienia.

Aby zminimalizować te błędy, zaawansowane wzmacniacze wykrywające prąd, takie jak MCP6C26 firmy Microchip, zawierają architekturę zerowego dryftu, która stale koryguje błędy przesunięcia i utrzymuje wysoki współczynnik CMRR. Ponadto trymowanie rezystorów podczas procesu produkcyjnego pomaga zmniejszyć błędy wzmocnienia, zapewniając precyzyjne pomiary prądu.

Źródło: Microchip Technology Inc. Tłumaczenie: Gamma Sp. z o.o.

Gamma Sp. z o.o. jest autoryzowanym dystrybutorem rozwiązań firmy Microchip Technology w Polsce. Zapraszamy do kontaktu z naszym działem handlowym.

Pozostałe aktualności:

Microchip prezentuje pierwszy switch PCIe® Gen 6 w technologii 3nm, który ma napędzać nowoczesną infrastrukturę AI

Microchip prezentuje pierwszy switch PCIe® Gen 6 w technologii 3nm,...

Rodzina Switchtec Gen 6, to pierwsze w branży przełączniki PCIe Gen 6 wyprodukowane w procesie technologicznym 3 nm,...

wtorek, 14 października, 2025 Więcej

Zaproszenie na stoisko firmy Gamma w czasie bezpłatnych targów Evertiq Expo 2025 w Warszawie

Zaproszenie na stoisko firmy Gamma w czasie bezpłatnych targów Evertiq...

Zapraszamy serdecznie do udziału w bezpłatnych targach branżowy elektroniki Evertiq Expo 2025 w Warszawie.

wtorek, 14 października, 2025 Więcej

Digi International świętuje dostarczenie 25 milionów modułów bezprzewodowych Digi XBee

Digi International świętuje dostarczenie 25 milionów modułów...

Digi International wiodący globalny dostawca rozwiązań łączności Internetu Rzeczy (IoT), świętuje dostawę ponad 25...

poniedziałek, 13 października, 2025 Więcej

MCP6576/7/9 nowej generacji szybkie komparatory firmy Microchip Technology odpowiadają na potrzeby projektowe rynku

MCP6576/7/9 nowej generacji szybkie komparatory firmy Microchip...

Firma Microchip Technology z dumą prezentuje nowej generacji (Gen2) rodzinę szybkich komparatorów MCP657x, następców...

poniedziałek, 13 października, 2025 Więcej

PGL727XHLT sprzężone cewki indukcyjne firmy YAGEO zasilają procesory, pamięci, układy FPGA i ASIC w serwerach, centrach danych i systemach pamięci

PGL727XHLT sprzężone cewki indukcyjne firmy YAGEO zasilają procesory,...

Sprzężone cewki indukcyjne PGL727XHLT dzięki wspólnym uzwojeniom na jednym rdzeniu, redukują tętnienia w fazie bez...

poniedziałek, 13 października, 2025 Więcej

Microchip Technology i AVIVA Links zapewniają przełomową interoperacyjność ASA-ML, przyspieszając przejście na otwarte standardy łączności samochodowe

Microchip Technology i AVIVA Links zapewniają przełomową...

Firma Microchip Technology ogłosiła ważny kamień milowy we współpracy z AVIVA Links, firmą motoryzacyjną...

czwartek, 9 października, 2025 Więcej