Dodano: wtorek, 04 marca 2025r. Producent: Microchip

Zrozumienie błędów pomiaru wzmacniacza w pomiarze prądu opartym na boczniku

Wzmacniacze wykrywające prąd na bazie bocznika są stosowane w różnych zastosowaniach do pomiaru prądu przepływającego przez precyzyjny rezystor bocznikowy bez przerywania obwodu. Działają poprzez pomiar spadku napięcia na rezystorze bocznikowym umieszczonym szeregowo z obciążeniem. Następnie wzmacniacz wykrywający prąd wzmacnia ten niewielki spadek napięcia do użytecznego poziomu w celu dalszego przetwarzania.

Konieczność dokładnego pomiaru prądu jest krytyczna w wielu zastosowaniach. Niektóre typowe przypadki użycia wykrywania prądu na bazie bocznika obejmują m.in.

  • Zarządzanie energią: Monitorowanie i kontrolowanie zużycia energii w systemach, takich jak zasilacze, ładowarki akumulatorów i systemy zarządzania energią.
  • Monitorowanie akumulatorów: Pomiar prądów ładowania i rozładowywania w akumulatorach w celu oszacowania stanu naładowania i kondycji akumulatorów.
  • Sterowanie silnikiem: Wykrywanie prądu w napędach silników w celu zapewnienia informacji zwrotnej dla algorytmów sterowania w zastosowaniach, takich jak pojazdy elektryczne, automatyka przemysłowa i robotyka.
  • Zabezpieczenie nadprądowe: Wykrywanie stanów nadprądowych w celu uruchomienia środków ochronnych w systemach zasilania, zapobiegając uszkodzeniom elementów obwodu.
  • Wykrywanie obciążenia: Określanie obecności lub braku obciążenia lub zmian impedancji obciążenia, co może mieć kluczowe znaczenie w systemach, takich jak zasilacze i systemy oświetleniowe.
  • Systemy samochodowe: Monitorowanie prądów w samochodowych systemach elektrycznych do zastosowań, takich jak sterowanie wtryskiem paliwa, wspomaganie kierownicy i zarządzanie akumulatorem.
  • Falowniki solarne: Pomiar prądu wytwarzanego przez panele słoneczne w celu maksymalizacji śledzenia punktu mocy i zapewnienia wydajnej konwersji energii.
  • Urządzenia przenośne: Integracja z systemami zarządzania energią smartfonów, laptopów i tabletów w celu optymalizacji żywotności baterii i zapewnienia bezpiecznego ładowania i rozładowywania.
  • Telekomunikacja: Stosowane w systemach zasilania telekomunikacyjnego do monitorowania prądu we wzmacniaczach mocy, zapewniając niezawodną pracę infrastruktury komunikacyjnej.
  • Wykrywanie usterek: Identyfikowanie anomalii obwodów poprzez wykrywanie nieoczekiwanego przepływu prądu, który może wskazywać na zwarcia lub awarie podzespołów.

Kluczowym podzespołem obwodu wykrywania prądu jest rezystor bocznikowy, który zamienia przepływający przez niego prąd na proporcjonalny spadek napięcia. Prawo Ohma mówi, że spadek napięcia na rezystorze jest równy iloczynowi prądu i wartości rezystora. Tradycyjnie rezystory bocznikowe o wyższej wartości były używane do tworzenia większego spadku napięcia, co ułatwiało pomiar małych prądów z większą dokładnością. Jednak takie podejście ma kilka wad:

  • Strata mocy: Większa rezystancja powoduje większe rozproszenie mocy, co może być szkodliwe w zastosowaniach wrażliwych na moc.
  • Generowanie ciepła: Większa strata mocy powoduje wydzielanie ciepła, co może mieć wpływ na otaczające komponenty i ogólną niezawodność systemu.
  • Koszt i rozmiar: Rezystory o wysokiej precyzji i dużej mocy są zazwyczaj droższe i większe, co może być problemem w przypadku kompaktowych konstrukcji.

Wybór odpowiedniego wzmacniacza wykrywającego prąd ma kluczowe znaczenie dla umożliwienia dokładnego pomiaru, szczególnie w przypadku stosowania rezystora bocznikowego o mniejszej wartości. W następnej sekcji omówiono typowe źródła błędów i krytyczne specyfikacje wzmacniaczy wykrywających prąd.

Napięcie przesunięcia wprowadza błąd bazowy, który może znacząco wpłynąć na pomiary niskiego napięcia, co wymaga użycia rezystorów bocznikowych o wyższej wartości w celu złagodzenia jego wpływu. Jednak takie podejście może prowadzić do zwiększonej utraty mocy, generowania ciepła i wyższych kosztów. Tłumienie sygnału wspólnego jest niezbędne do filtrowania szumów, które mogą zniekształcać pomiar, a wysoki współczynnik CMRR jest kluczowy dla utrzymania dokładności w środowiskach o dużym poziomie szumów. Prądy polaryzacji wejściowej mogą stać się czynnikiem, jeśli do pinów wejściowych wzmacniacza zostaną dodane rezystory szeregowe. Dokładność wzmocnienia zapewnia, że ​​napięcie wyjściowe prawidłowo reprezentuje prąd płynący przez rezystor bocznikowy, a wszelkie odchylenia mogą prowadzić do nieprawidłowych odczytów prądu.

Wykrywanie prądu na podstawie bocznika to krytyczna technika stosowana w szerokim zakresie zastosowań, od zarządzania energią i monitorowania baterii po sterowanie silnikiem i wykrywanie usterek. Dokładność tych pomiarów zależy od wydajności wzmacniacza wykrywającego prąd. Kilka źródeł błędów wzmacniacza może mieć wpływ na dokładność pomiarów prądu, w tym napięcie przesunięcia, tłumienie sygnału wspólnego, prąd polaryzacji i dokładność wzmocnienia.

Aby zminimalizować te błędy, zaawansowane wzmacniacze wykrywające prąd, takie jak MCP6C26 firmy Microchip, zawierają architekturę zerowego dryftu, która stale koryguje błędy przesunięcia i utrzymuje wysoki współczynnik CMRR. Ponadto trymowanie rezystorów podczas procesu produkcyjnego pomaga zmniejszyć błędy wzmocnienia, zapewniając precyzyjne pomiary prądu.

Źródło: Microchip Technology Inc. Tłumaczenie: Gamma Sp. z o.o.

Gamma Sp. z o.o. jest autoryzowanym dystrybutorem rozwiązań firmy Microchip Technology w Polsce. Zapraszamy do kontaktu z naszym działem handlowym.

Pozostałe aktualności:

Przygotuj na przyszłość projekty ładowarek dla 2 i 3-kołowych pojazdów elektrycznych z projektami referencyjnymi firmy Power Integrations

Przygotuj na przyszłość projekty ładowarek dla 2 i 3-kołowych pojazdów...

Dwa nowe projekty referencyjne firmy Power Integrations to gotowe do produkcji zasilacze, przeznaczone dla...

czwartek, 13 listopada, 2025 Więcej

Udoskonalanie architektury strefowej dzięki punktom końcowym 10BASE-T1S w celu zapewnienia inteligentniejszej łączności zdalnej

Udoskonalanie architektury strefowej dzięki punktom końcowym 10BASE-T1S...

Firma Microchip Technology wprowadza rodzinę urządzeń końcowych LAN866x 10BASE-T1S z protokołem zdalnego sterowania...

czwartek, 13 listopada, 2025 Więcej

MCP391xB ulepszone analogowe moduły front-end firmy Microchip Technology zapewniające niezawodną pracę przy niskim poborze mocy

MCP391xB ulepszone analogowe moduły front-end firmy Microchip Technology...

Firma Microchip Technology zaprezentowała nową serię analogowych układów front-end (AFE) MCP391xB, obejmującą sześć...

środa, 12 listopada, 2025 Więcej

Avalue Technology prezentuje serię wytrzymałych komputerów z panelem dotykowym o wysokiej wydajności stworzone dla zautomatyzowanych fabryk

Avalue Technology prezentuje serię wytrzymałych komputerów z panelem...

Firma Avalue Technology Inc., światowy lider w dziedzinie rozwiązań komputerowych dla przemysłu, oficjalnie...

środa, 12 listopada, 2025 Więcej

Skyworks wprowadza nowe programowalne zegary fal akustycznych do zastosowań 5G, 6G i centrów danych

Skyworks wprowadza nowe programowalne zegary fal akustycznych do...

Zegary SKY63101/02/03 Jitter Attenuating Clocks oraz zegary SKY69001/02/101 NetSync™ wykorzystują sprawdzoną...

środa, 12 listopada, 2025 Więcej

Microchip Technology prezentuje serwer protokołu Model Context Protocol (MCP) umożliwiający dostęp do danych produktów oparty na sztucznej inteligencj

Microchip Technology prezentuje serwer protokołu Model Context Protocol...

Serwer MCP, będący interfejsem AI, łączy się bezpośrednio z kompatybilnymi narzędziami AI i modelami LLM (Large...

piątek, 7 listopada, 2025 Więcej