Dodano: wtorek, 20 sierpnia 2024r. Producent: Microchip

Zwiększanie efektywności energetycznej w zastosowaniach silników elektrycznych

Silniki elektryczne są integralną częścią różnych systemów, w tym pomp, przenośników, sprężarek, wentylatorów, systemów robotycznych, urządzeń, systemów obsługi materiałów i maszyn CNC. Systemy te są niezbędne do obsługi procesów przemysłowych, pozyskiwania zasobów przy użyciu inteligentnego rolnictwa, e-mobilności i obsługi jednostek HVAC zarówno w warunkach mieszkalnych, jak i komercyjnych. Zwiększenie efektywności energetycznej sterowania ruchem w tych zastosowaniach ma kluczowe znaczenie, ponieważ może prowadzić do znacznego zmniejszenia emisji gazów cieplarnianych i przyczyniać się do korzystniejszego śladu środowiskowego.

Oprócz właściwego doboru rozmiaru i typu silnika, twórcy systemów biorą pod uwagę następujące czynniki podczas projektowania wbudowanych systemów sterowania silnikiem w czasie rzeczywistym, które charakteryzują się niskimi stratami mocy, co wydłuża czas pracy baterii i wydłuża żywotność:

  • Optymalne napięcie i prąd dostarczany do silnika,
  • Niższe prądy rozruchowe i rozruchowe silnika,
  • Optymalizacja zarządzania termicznego,
  • Redukcja kosztów, rozmiarów i hałasu,
  • Wysoka gęstość mocy,
  • Bezpieczeństwo funkcjonalne i ochrona.

Większość z tych celów projektowych można osiągnąć na poziomie systemu poprzez wybór odpowiedniego mikrokontrolera (MCU), lub mikroprocesora zdolnego do szybkich obliczeń matematycznych i cyfrowego przetwarzania sygnału wymaganego do wdrożenia sterowania w czasie rzeczywistym, z wysoce zintegrowanymi urządzeniami peryferyjnymi do wykonywania wielu funkcji przy użyciu jednego urządzenia. Ponadto kluczowe jest wykorzystanie przetworników DC/DC w całym systemie, które wykazują odpowiednią sprawność energetyczną przy zmiennych warunkach obciążenia, a także układów scalonych (IC) do pomiaru i kondycjonowania sygnału o szerokim paśmie i szybkich szybkościach konwersji próbkowania, aby ułatwić szybką reakcję na położenie wirnika silnika oraz zmiany prędkości kątowej i momentu obrotowego. W istocie rozwiązania sprzętowe, które stanowią system sterowania silnikiem, powinny dynamicznie dostosowywać sygnały wyjściowe modulacji szerokości impulsu (PWM) z mikrokontrolera lub mikroprocesora do sterowników bramek w stopniu mocy, aby regulować napięcie i prąd dostarczane do silnika. Napięcie i prąd dostarczane do silnika zależą od zapotrzebowania na moment obrotowy i prędkość. Silniki indukcyjne prądu przemiennego i silniki synchroniczne z magnesami trwałymi (PMSM) powszechnie wykorzystują napędy o zmiennej częstotliwości (VFD) w celu zmiany częstotliwości i napięcia w celu manipulowania prędkością i momentem obrotowym silnika, aby mógł on wykonywać swoją pracę tak wydajnie, jak to możliwe. Firma Microchip dostarcza biblioteki oprogramowania do sterowania silnikiem, które zawierają funkcjonalne bloki kodu do implementacji sterowania zorientowanego na pole (FOC), metody sterowania wektorowego dla napędów o zmiennej częstotliwości, przy użyciu cyfrowych kontrolerów sygnału dsPIC® (DSC) lub 32-bitowych mikrokontrolerów. W porównaniu do metod sterowania sinusoidalnego i trapezoidalnego algorytmy FOC do sterowania silnikiem oferują liczne korzyści, szczególnie w zastosowaniach o wysokiej wydajności, które wymagają precyzyjnej kontroli momentu obrotowego i niskiego poziomu hałasu roboczego. Co najważniejsze, algorytmy FOC przyczyniają się do znacznej poprawy efektywności energetycznej. Przykładowo, sterowanie FOC umożliwia niezależne sterowanie strumieniem magnetycznym i momentem obrotowym silnika, umożliwiając pracę w najbardziej efektywnym punkcie, zależnie od przyłożonych warunków obciążenia. Aby rozszerzyć implementację sterowania FOC, firma Microchip oferuje algorytmy specyficzne dla aplikacji dostosowane do zrównoważonych praktyk projektowych:

  • Osłabienie strumienia: Ograniczenie zapotrzebowania na napięcie silnika przy wyższych prędkościach,
  • Wykrywanie początkowego położenia (IPD): Rozpoczęcie ruchu silnika bez ruchu wstecznego,
  • Miękkie zatrzymanie: Ograniczenie skoków napięcia DC poprzez kontrolowaną redukcję prędkości silnika,
  • Wykrywanie przeciągnięcia: Reagowanie na przeciągnięcia silnika w celu ograniczenia przetężenia silnika,
  • Wiatrakowanie: Wykrywanie prędkości i położenia swobodnie poruszającego się silnika,
  • Kompensacja momentu obrotowego: Wykrywanie i redukcja drgań silnika.

Aby umożliwić budowę kompletnego rozwiązania sterowania silnikiem obejmującego sterownik, interaktywny schemat blokowy na stronie Energy-Efficient Motor Control Systems zapewnia projektantowi systemu wskazówki dotyczące wykorzystania naszego szerokiego portfolio produktów do zbudowania zrównoważonego systemu podłączonego do sieci energetycznej, odnawialnego źródła energii lub systemu magazynowania energii (np. akumulatora litowo-jonowego).

Kluczowe rozwiązania urządzeń Microchip Technology dla zrównoważonego sterowania silnikiem:

  • FPGA, 8/16/32-bitowe mikrokontrolery i cyfrowe kontrolery sygnału dsPIC®
  • Tranzystory MOSFET mocy, tranzystory IGBT, dyskretne elementy mocy i moduły w technologii węglika krzemu (SiC)
  • Sterowniki bramek
  • Zegar i synchronizacja
  • Interfejs i łączność
  • Indukcyjne czujniki położenia
  • Zarządzanie energią: LDO, regulatory przełączające
  • Wzmacniacze wykrywające prąd i urządzenia o mieszanym sygnale

Źródło: Microchip Technology Inc. Tłumaczenie: Gamma Sp. z o.o.

Gamma Sp. z o.o. jest autoryzowanym dystrybutorem rozwiązań firmy Microchip Technology Inc. w Polsce. W razie wszelkich pytań odnośnie podzespołów i komponentów firmy Microchip zapraszamy do kontaktu z naszym działem handlowym.

Pozostałe aktualności:

Moduł zasilania MCPF1525 firmy Microchip z magistralą PMBus™ zapewnia zasilanie prądem stałym o natężeniu 25A, z możliwością łączenia w stosy do 200A

Moduł zasilania MCPF1525 firmy Microchip z magistralą PMBus™ zapewnia...

Firma Microchip Technology ogłosiła wprowadzenie na rynek modułu zasilania MCPF1525, wysoce zintegrowanego urządzenia...

środa, 4 lutego, 2026 Więcej

Nowoczesne przekaźniki kontaktronowe serii 9853 Coto Technology do montażu powierzchniowego dla wymagających systemów automatycznego testowania (ATE)

Nowoczesne przekaźniki kontaktronowe serii 9853 Coto Technology do...

Przekaźniki serii 9853 CotoClassic™ stanowią znaczący postęp w technologii przekaźników kontaktronowych, oferując te...

środa, 4 lutego, 2026 Więcej

ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W modułów zasilania AC-DC oferując zgodność z kategorią przepięciową IV (OVC IV)

ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W...

Moduł zasilania ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W modułów zasilania AC-DC, będąc...

wtorek, 3 lutego, 2026 Więcej

Przegląd produktów Microchip 01/2026

Przegląd produktów Microchip 01/2026

Przegląd produktów firmy Microchip zawiera wybór najnowszych rozwiązań oraz projektów referencyjnych.

poniedziałek, 2 lutego, 2026 Więcej

GNSSL125DM26NM, aktywną antenę GNSS L1/L2/L5 przeznaczoną do zewnętrznych systemów pomiaru czasu i synchronizacji

GNSSL125DM26NM, aktywną antenę GNSS L1/L2/L5 przeznaczoną do...

Antena GNSSL125DM26NM obsługuje trzypasmowe pasmo GNSS w pasmach L1, L2 i L5, dzięki czemu nadaje się do zastosowań...

piątek, 30 stycznia, 2026 Więcej

Mikrokontrolery PIC32CM rodziny PL10 rozszerzają portfolio procesorów Arm® Cortex®-M0+ firmy Microchip Technology

Mikrokontrolery PIC32CM rodziny PL10 rozszerzają portfolio procesorów...

Firma Microchip Technology dodała mikrokontrolery PIC32CM PL10 do swojej rodziny mikrokontrolerów PIC32C z rdzeniem...

piątek, 30 stycznia, 2026 Więcej