Dodano: wtorek, 20 sierpnia 2024r. Producent: Microchip

Zwiększanie efektywności energetycznej w zastosowaniach silników elektrycznych

Silniki elektryczne są integralną częścią różnych systemów, w tym pomp, przenośników, sprężarek, wentylatorów, systemów robotycznych, urządzeń, systemów obsługi materiałów i maszyn CNC. Systemy te są niezbędne do obsługi procesów przemysłowych, pozyskiwania zasobów przy użyciu inteligentnego rolnictwa, e-mobilności i obsługi jednostek HVAC zarówno w warunkach mieszkalnych, jak i komercyjnych. Zwiększenie efektywności energetycznej sterowania ruchem w tych zastosowaniach ma kluczowe znaczenie, ponieważ może prowadzić do znacznego zmniejszenia emisji gazów cieplarnianych i przyczyniać się do korzystniejszego śladu środowiskowego.

Oprócz właściwego doboru rozmiaru i typu silnika, twórcy systemów biorą pod uwagę następujące czynniki podczas projektowania wbudowanych systemów sterowania silnikiem w czasie rzeczywistym, które charakteryzują się niskimi stratami mocy, co wydłuża czas pracy baterii i wydłuża żywotność:

  • Optymalne napięcie i prąd dostarczany do silnika,
  • Niższe prądy rozruchowe i rozruchowe silnika,
  • Optymalizacja zarządzania termicznego,
  • Redukcja kosztów, rozmiarów i hałasu,
  • Wysoka gęstość mocy,
  • Bezpieczeństwo funkcjonalne i ochrona.

Większość z tych celów projektowych można osiągnąć na poziomie systemu poprzez wybór odpowiedniego mikrokontrolera (MCU), lub mikroprocesora zdolnego do szybkich obliczeń matematycznych i cyfrowego przetwarzania sygnału wymaganego do wdrożenia sterowania w czasie rzeczywistym, z wysoce zintegrowanymi urządzeniami peryferyjnymi do wykonywania wielu funkcji przy użyciu jednego urządzenia. Ponadto kluczowe jest wykorzystanie przetworników DC/DC w całym systemie, które wykazują odpowiednią sprawność energetyczną przy zmiennych warunkach obciążenia, a także układów scalonych (IC) do pomiaru i kondycjonowania sygnału o szerokim paśmie i szybkich szybkościach konwersji próbkowania, aby ułatwić szybką reakcję na położenie wirnika silnika oraz zmiany prędkości kątowej i momentu obrotowego. W istocie rozwiązania sprzętowe, które stanowią system sterowania silnikiem, powinny dynamicznie dostosowywać sygnały wyjściowe modulacji szerokości impulsu (PWM) z mikrokontrolera lub mikroprocesora do sterowników bramek w stopniu mocy, aby regulować napięcie i prąd dostarczane do silnika. Napięcie i prąd dostarczane do silnika zależą od zapotrzebowania na moment obrotowy i prędkość. Silniki indukcyjne prądu przemiennego i silniki synchroniczne z magnesami trwałymi (PMSM) powszechnie wykorzystują napędy o zmiennej częstotliwości (VFD) w celu zmiany częstotliwości i napięcia w celu manipulowania prędkością i momentem obrotowym silnika, aby mógł on wykonywać swoją pracę tak wydajnie, jak to możliwe. Firma Microchip dostarcza biblioteki oprogramowania do sterowania silnikiem, które zawierają funkcjonalne bloki kodu do implementacji sterowania zorientowanego na pole (FOC), metody sterowania wektorowego dla napędów o zmiennej częstotliwości, przy użyciu cyfrowych kontrolerów sygnału dsPIC® (DSC) lub 32-bitowych mikrokontrolerów. W porównaniu do metod sterowania sinusoidalnego i trapezoidalnego algorytmy FOC do sterowania silnikiem oferują liczne korzyści, szczególnie w zastosowaniach o wysokiej wydajności, które wymagają precyzyjnej kontroli momentu obrotowego i niskiego poziomu hałasu roboczego. Co najważniejsze, algorytmy FOC przyczyniają się do znacznej poprawy efektywności energetycznej. Przykładowo, sterowanie FOC umożliwia niezależne sterowanie strumieniem magnetycznym i momentem obrotowym silnika, umożliwiając pracę w najbardziej efektywnym punkcie, zależnie od przyłożonych warunków obciążenia. Aby rozszerzyć implementację sterowania FOC, firma Microchip oferuje algorytmy specyficzne dla aplikacji dostosowane do zrównoważonych praktyk projektowych:

  • Osłabienie strumienia: Ograniczenie zapotrzebowania na napięcie silnika przy wyższych prędkościach,
  • Wykrywanie początkowego położenia (IPD): Rozpoczęcie ruchu silnika bez ruchu wstecznego,
  • Miękkie zatrzymanie: Ograniczenie skoków napięcia DC poprzez kontrolowaną redukcję prędkości silnika,
  • Wykrywanie przeciągnięcia: Reagowanie na przeciągnięcia silnika w celu ograniczenia przetężenia silnika,
  • Wiatrakowanie: Wykrywanie prędkości i położenia swobodnie poruszającego się silnika,
  • Kompensacja momentu obrotowego: Wykrywanie i redukcja drgań silnika.

Aby umożliwić budowę kompletnego rozwiązania sterowania silnikiem obejmującego sterownik, interaktywny schemat blokowy na stronie Energy-Efficient Motor Control Systems zapewnia projektantowi systemu wskazówki dotyczące wykorzystania naszego szerokiego portfolio produktów do zbudowania zrównoważonego systemu podłączonego do sieci energetycznej, odnawialnego źródła energii lub systemu magazynowania energii (np. akumulatora litowo-jonowego).

Kluczowe rozwiązania urządzeń Microchip Technology dla zrównoważonego sterowania silnikiem:

  • FPGA, 8/16/32-bitowe mikrokontrolery i cyfrowe kontrolery sygnału dsPIC®
  • Tranzystory MOSFET mocy, tranzystory IGBT, dyskretne elementy mocy i moduły w technologii węglika krzemu (SiC)
  • Sterowniki bramek
  • Zegar i synchronizacja
  • Interfejs i łączność
  • Indukcyjne czujniki położenia
  • Zarządzanie energią: LDO, regulatory przełączające
  • Wzmacniacze wykrywające prąd i urządzenia o mieszanym sygnale

Źródło: Microchip Technology Inc. Tłumaczenie: Gamma Sp. z o.o.

Gamma Sp. z o.o. jest autoryzowanym dystrybutorem rozwiązań firmy Microchip Technology Inc. w Polsce. W razie wszelkich pytań odnośnie podzespołów i komponentów firmy Microchip zapraszamy do kontaktu z naszym działem handlowym.

Pozostałe aktualności:

Firma Avalue Technology zaprezentowała ultracienkie panelowe komputery PC oparte na wydajnym procesorze Rockchip RK3576

Firma Avalue Technology zaprezentowała ultracienkie panelowe komputery...

Ultra cienkie komputery panelowe PC o przekątnej 21" APC-21WR6 oraz 23,8" APC-24WR6 firmy Avalue Technology dysponują...

poniedziałek, 2 czerwca, 2025 Więcej

HiperLCS-2 firmy Power Integrations zwiększa sprawność konwertera LLC zapewniając do 1650W ciągłej mocy wyjściowej

HiperLCS-2 firmy Power Integrations zwiększa sprawność konwertera LLC...

Chipset HiperLCS-2 firmy Power Integrations do przełączania offline LLC zapewnia teraz do 1650W ciągłej mocy...

czwartek, 29 maja, 2025 Więcej

AJCV150 moduł zasilania firmy ARCH Electronics zbudowany do zastosowań przemysłowych wymagających niewielkiej przestrzeni

AJCV150 moduł zasilania firmy ARCH Electronics zbudowany do zastosowań...

150W moduł zasilania AJCV150 firmy ARCH Electronics pokonuje te ograniczenia, oferując kompaktowe rozwiązanie o dużej...

poniedziałek, 26 maja, 2025 Więcej

Firma Microchip Technology wprowadza urządzenia PolarFire® Core FPGA oraz SoC FPGA

Firma Microchip Technology wprowadza urządzenia PolarFire® Core FPGA...

Firma Microchip Technology wprowadziła serię PolarFire® Core FPGA i SoC FPGA - zoptymalizowanych pod względem kosztów...

poniedziałek, 26 maja, 2025 Więcej

Zaprojektowany dla zastosowań Edge AI, panel FPC-21W42 firmy Avalue Technology oferuje wydajność i adaptowalność w różnych wymagających branżach

Zaprojektowany dla zastosowań Edge AI, panel FPC-21W42 firmy Avalue...

Avalue Technology Inc., światowy lider w dziedzinie rozwiązań do komputerów przemysłowych, wprowadził na rynek swój...

piątek, 23 maja, 2025 Więcej

Siemens EDA wprowadza do oferty wspomagane przez AI pakiety PADS Pro Essentials oraz Xpedition Standard

Siemens EDA wprowadza do oferty wspomagane przez AI pakiety PADS Pro...

Firma Siemens wprowadziła dwa nowe pakiety oprogramowania do projektowania PCB. Są to wspomagane przez AI PADS Pro...

czwartek, 22 maja, 2025 Więcej