Dodano: środa, 03 stycznia 2024r. Producent: Microchip

Redukcja NVH: przewodnik po poprawie hałasu, wibracji i uciążliwości w zastosowaniach o małej mocy

Urządzenia z ruchomymi częściami, takie jak wentylatory i pompy, mogą znacząco zyskać na minimalizacji NVH. Urządzenia te znajdują zastosowanie w różnych aplikacjach, m.in. w chłodzeniu elektroniki, klimatyzacji samochodowej, procesach przemysłowych, hydraulice i sprzęcie AGD. Zmniejszenie NVH nie tylko poprawia komfort użytkowania, ale także wydłuża żywotność urządzenia.

Jeśli chodzi o sterowanie silnikiem, w grę wchodzi kilka czynników, ale dwa kluczowe elementy to kształt fali napędu i kontrola sprzężenia zwrotnego. Wybór pomiędzy generacją przebiegu trapezowego i sinusoidalnego zależy od zastosowania. Przebiegi trapezowe, choć prostsze, pozwalają na osiągnięcie wyższych prędkości silnika, ale są zazwyczaj głośniejsze i powodują tętnienia momentu obrotowego. Natomiast przebiegi sinusoidalne zapewniają płynniejszą i cichszą pracę silnika ze stałym momentem obrotowym dostarczanym do silnika, ale wiążą się ze zwiększoną złożonością sterowania.

Kolejnym istotnym czynnikiem w sterowaniu silnikiem jest wybór sygnałów sprzężenia zwrotnego pomiędzy rozwiązaniami czujnikowymi i bezczujnikowymi. Sterowanie silnikiem oparte na czujnikach doskonale sprawdza się w zastosowaniach o niskiej prędkości, oferując precyzję poprzez dostarczanie informacji zwrotnej w czasie rzeczywistym na temat położenia wirnika. Jeśli rozdzielczość czujnika nie jest ważna dla aplikacji, czujniki Halla są tańszą opcją. W przypadku zastosowań wymagających wysokiej rozdzielczości przy dużych i niskich prędkościach lepszym wyborem jest czujnik kwadraturowy. Z drugiej strony, bezczujnikowe sterowanie silnikiem idealnie nadaje się do zastosowań wymagających wyższych prędkości, polegając na sygnale wstecznej siły elektromagnetycznej (Back-EMF) w celu wykrycia przejścia przez zero oraz oszacowania położenia i prędkości wirnika, co w niektórych przypadkach czyni go opłacalnym wyborem.

W wielu przypadkach do rozwiązywania problemów z hałasem i wibracjami preferowane są bezszczotkowe silniki prądu stałego (BLDC), zwłaszcza bezszczotkowe silniki synchroniczne z magnesami trwałymi (PMSM), ze względu na ich zdolność do zapewnienia płynnej pracy. Jednak osiągnięcie tej płynności często wymaga zaawansowanych technik sterowania, co może wymagać wysokiej klasy urządzeń sterujących. Większość 8-bitowych mikrokontrolerów (MCU) dostępnych na rynku ma trudności z generowaniem przebiegów niemal sinusoidalnych i zapewnieniem sterowania bez czujników.

Dlatego firma Microchip oferuje ekonomiczne rozwiązanie do sterowania silnikami BLDC, szczególnie w zastosowaniach małej mocy. Mikrokontroler AVR® EB (MCU) zapewnia płynniejszą pracę silnika i zwiększa trwałość komponentów systemu. Programowanie za pomocą MCU AVR EB jest łatwiejsze dzięki gotowym sterownikom i przykładom kodu aplikacji, które są dostępne do swobodnego użytku. Dodatkowo zintegrowana platforma programistyczna MPLAB® X i przyjazny dla użytkownika konfigurator kodu MPLAB® (MCC) upraszczają konfigurację urządzeń peryferyjnych i dostosowują funkcje specyficzne do aplikacji. Narzędzia te pozwalają na płynną transformację innowacyjnych pomysłów w rozwiązania gotowe do wejścia na rynek.

Narzędzia programistyczne

Rodzina mikrokontrolerów AVR EB jest w pełni obsługiwana przez ekosystem programistyczny MPLAB® firmy Microchip i jest wprowadzana wraz z nową płytką rozwojową Curiosity Nano, która wspiera szybkie prototypowanie. Zestaw ewaluacyjny Curiosity Nano AVR16EB32 (EV73J36A) bezproblemowo łączy się ze zintegrowanymi środowiskami programistycznymi (IDE) MPLAB X, Microchip Studio i IAR Embedded Workbench. MPLAB Code Configurator (MCC) Melody - intuicyjne, graficzne narzędzie konfiguracyjne w chmurze online - może również pomóc w skróceniu czasu programowania.

Gamma Sp. z o.o. jest autoryzowanym dystrybutorem rozwiązań firmy Microchip Technology w Polsce. Zapraszamy do kontaktu z naszym działem handlowym.

Pozostałe aktualności:

Zapewnienie zgodności z przepisami dotyczącymi cyberbezpieczeństwa zgodnie z ustawą o cyberodporności (CRA) w urządzeniach sieciowych firmy Lantech

Zapewnienie zgodności z przepisami dotyczącymi cyberbezpieczeństwa...

Akt o odporności cybernetycznej (Cyber Resilience Act - CRA) stanowi fundamentalny zwrot w unijnej polityce...

wtorek, 10 lutego, 2026 Więcej

Hongfa HF235F przekaźnik klasy Solar Relay dla systemów wysokoprądowych

Hongfa HF235F przekaźnik klasy Solar Relay dla systemów wysokoprądowych

W dobie transformacji energetycznej i dynamicznego rozwoju systemów odnawialnych źródeł energii, kluczowe znaczenie...

wtorek, 10 lutego, 2026 Więcej

Moduł zasilania MCPF1525 firmy Microchip z magistralą PMBus™ zapewnia zasilanie prądem stałym o natężeniu 25A, z możliwością łączenia w stosy do 200A

Moduł zasilania MCPF1525 firmy Microchip z magistralą PMBus™ zapewnia...

Firma Microchip Technology ogłosiła wprowadzenie na rynek modułu zasilania MCPF1525, wysoce zintegrowanego urządzenia...

środa, 4 lutego, 2026 Więcej

Nowoczesne przekaźniki kontaktronowe serii 9853 Coto Technology do montażu powierzchniowego dla wymagających systemów automatycznego testowania (ATE)

Nowoczesne przekaźniki kontaktronowe serii 9853 Coto Technology do...

Przekaźniki serii 9853 CotoClassic™ stanowią znaczący postęp w technologii przekaźników kontaktronowych, oferując te...

środa, 4 lutego, 2026 Więcej

ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W modułów zasilania AC-DC oferując zgodność z kategorią przepięciową IV (OVC IV)

ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W...

Moduł zasilania ATCW40 firmy ARCH Electronics wyznacza nowy standard w kategorii 40W modułów zasilania AC-DC, będąc...

wtorek, 3 lutego, 2026 Więcej

Przegląd produktów Microchip 01/2026

Przegląd produktów Microchip 01/2026

Przegląd produktów firmy Microchip zawiera wybór najnowszych rozwiązań oraz projektów referencyjnych.

poniedziałek, 2 lutego, 2026 Więcej