Jednym z wyzwań stawianych przed konstruktorami zasilaczy impulsowych typu flyback zasilanych z sieci, jest osiągnięcie jak największej sprawności, przy jak najmniejszych rozmiarach i kosztach projektowanego obwodu. Jednym z zagadnień, które muszą zostać rozwiązane na etapie projektowania, jest takie opracowanie obwodu gasika, które zapewni całkowitą ochronę przed przekroczeniem maksymalnego dopuszczalnego napięcia na tranzystorze kluczującym. Najlepiej zaprojektowany gasik nie umożliwia jednak odzyskania energii zgromadzonej w indukcyjności rozproszenia, jako że jego zadaniem jest zamiana tej energii na ciepło. Temperatura jest również wydzielana w wielu innych miejscach zasilacza, między innymi w samym driverze, na skutek m.in. strat przy przełączaniu tranzystora. W rezultacie częstotliwość pracy drivera musi być czasem ograniczona stosownie do wymagań aplikacji (np. praca w zamkniętej obudowie, bez otworów wentylacyjnych), co z kolei skutkuje zwiększeniem rozmiarów transformatora.
Problemy te postanowiła rozwiązać „za jednym zamachem” firma Power Integrations, lider na rynku sterowników do zasilaczy impulsowych, prezentując dwie nowe rodziny układów przeznaczonych do współpracy ze sobą: InnoSwitch4-CZ oraz ClampZero.
Aby zrozumieć korzyści płynące z tego nowego rozwiązania, należy najpierw przeanalizować zasadę działania tradycyjnego gasika (np. w konfiguracji RCD). W pierwszym cyklu pracy przetwornicy, gdy mosfet kluczujący przewodzi prąd, energia jest magazynowana zarówno w indukcyjności uzwojenia pierwotnego (dokładnie w szczelinie powietrznej w rdzeniu transformatora), jak i w indukcyjności rozproszenia. W kolejnym cyklu, gdy mosfet przestaje przewodzić i napięcie na nim gwałtownie wzrasta, energia zmagazynowana w transformatorze zostaje przekazana na wyjście. Nie dzieje się tak jednak w przypadku energii związanej z indukcyjnością rozproszenia. Mimo jej niewielkiej wartości, już dla mocy od ok. 1,5W musi zostać rozproszona po stronie pierwotnej (w gasiku), inaczej stanie się przyczyną zniszczenia tranzystora kluczującego (na skutek przekroczenia na nim dopuszczalnego napięcia).
Na rys. 1 został przedstawiony gasik w najbardziej typowej konfiguracji, zawierającej diodę, kondensator i rezystor (RCD). W momencie gdy tranzystor przestaje przewodzić, prąd nadal płynie przez indukcyjność rozproszenia, ładując tym samym kondensator. Kiedy cała energia uwięziona w indukcyjności rozproszenia zostanie przekazana do kondensatora, napięcie na drenie spada, a kondensator rozładowuje się przez rezystor. Towarzyszy temu wydzielanie ciepła, które dla zasilaczy o wyższej mocy musi być już brane pod uwagę przy projektowaniu. Wartość straconej energii zależy od wartości indukcyjności rozproszenia, która stanowi zazwyczaj ok 2% wartości indukcyjności uzwojenia pierwotnego i zależy od jakości wykonania transformatora. Do tej pory nie było w zasadzie możliwości wykorzystania tej energii, a od czas do czasu proponowane rozwiązania alternatywne do gasika (np. tzw. „clamp winding”) nie sprawdzały się w praktyce.
Na rys. 2 przedstawiono schemat wykorzystujący driver z nowej rodziny InnoSwitch4-CZ oraz układ ClampZero. Zasada działania w pierwszej chwili po wyłączeniu tranzystora w driverze jest taka sama jak w zwykłym gasiku, tj. energia zostaje przekazana do kondensatora i tam zmagazynowana (tranzystor w układzie ClampZero nie przewodzi), chroniąc tym samym driver przed zniszczeniem. W chwili gdy kontroler strony wtórnej w InnoSwitch’u wysyła żądanie rozpoczęcia kolejnego impulsu kluczującego (tj. włączenia mosfetu po stronie pierwotnej), driver najpierw generuje impuls uruchamiający tranzystor w ClampZero, dzięki czemu zaczyna rozładowywać się kondensator. Energia z kondensatora jest wtedy przekazywana bezpośrednio na wyjście zasilacza (poprzez uzwojenie pierwotne), ale częściowo zostaje ponownie „uwięziona”, w indukcyjności uzwojenia pierwotnego i w indukcyjności rozproszenia.
Zgodnie z zasadą wymienioną w tytule niniejszego artykułu, firma Power Integrations nawet tą niewielka, ponownie zmagazynowaną „porcję” energii jest w stanie wykorzystać. Driver czeka przez czas ustawiany wartością zewnętrznych komponentów (rezystorów), aż kondensator całkowicie się rozładuje. W kolejnym kroku wyłączany jest tranzystor w ClampZero, a driver czeka ponownie aż energia zgromadzona w indukcyjności rozładuje pojemność dren-źródło w głównym mosfecie, do wartości bliskiej zeru. Wtedy dopiero następuje uruchomienie kolejnego cyklu. Cel tego zabiegu jest oczywisty – wyeliminowanie strat przy przełączaniu, dzięki driver mniej się grzeje a ogólna sprawność zasilacza wzrasta. Dodatkowym benefitem jest fakt, że dzięki temu driver może pracować z większą częstotliwością (do ok. 140kHz), co skutkuje zmniejszeniem rozmiarów transformatora oraz obniżeniem jego kosztów.
Wszystkie wymienione wyżej zabiegi służą zwiększeniu sprawności i redukcji rozmiarów zasilacza, szczególnie w przypadku aplikacji takich jak zaawansowane ładowarki USB, obsługujące funkcję Power Delivery lub Quick Charge. InnoSwitch4-CZ driver oprócz nowej funkcjonalności, zachowuje wszystkie zalety znane z serii InnoSwitch3, czyli m.in. izolowany galwanicznie interfejs FluxLink, układ sterowania prostownika synchronicznego i obwody zabezpieczeń. Driver wyposażony jest w wysokonapięciowy (750V) tranzystor wykonany w technologii PowiGaN, umożliwiający osiąganie mocy z przedziału od ok 60W do 110W, w zależności od wersji.