Dodano: piątek, 20 grudnia 2019r. Producent: CotoTechnology

Kiedy trzeba przetestować w temperaturze +125°C

Wiele układów scalonych stosowanych w środowiskach narażonych na wysokie temperatury (na przykład pod maską samochodu) musi być kwalifikowanych do pracy w wysokich temperaturach, aby zapewnić spełnienie przez nie specyfikacji projektowych. Projektanci systemów zautomatyzowanego sprzętu testowego (ATE) stoją przed wyzwaniem, w jaki sposób należy poddać urządzenie (DUT) próbom obciążeniowym podczas projektowania lub testów produkcyjnych. Tradycyjnie, interfejs pomiędzy systemem ATE i DUT jest płyta testowa, która jest płytką drukowaną wyposażoną w gniazdo testowe dla DUT i prowadzące do niego przełączalne ścieżki sygnałowe. Sygnały testowe są przełączane do i z różnych styków DUT za pomocą przekaźników pod kontrolą programową z urządzenia ATE.

Testowanie DUT'ów w wysokiej temperaturze stwarza pewne ciekawe problemy logistyczne. Całe systemy ATE nie mogą być umieszczone w ogrzewanej komorze testowej, ponieważ są masywne i nie są przeznaczone do pracy w podwyższonych temperaturach. Nie jest również praktyczne umieszczanie tylko gniazda testowego DUT w komorze, ponieważ ważne jest zachowanie krótkich ścieżek sygnałowych z ATE w celu utrzymania integralności sygnału. Odpowiedź brzmi: albo umieścić całą płytę testową i gniazdo DUT wewnątrz komory testowej lub nadmuchać gorące powietrze na DUT, które nieuchronnie obciąża temperaturowo sąsiednie elementy z powodu nadmiernego rozprzestrzeniania się ciepła.

Aby wykonać próbę w wysokiej temperaturze, karta testowa i wszystkie jej elementy, w tym przekaźniki przełączające, muszą być przystosowane pod kątem niezawodnego działania w temperaturze testowej, zazwyczaj 125°C.

Przekaźniki kontaktronowe od dawna wybierane są w przypadku testów w niższych temperaturach ze względu na ich wysoką niezawodność, bardzo niską rezystancję (zazwyczaj poniżej 100 miliomów) i bardzo wysoką izolację elektryczną po wyłączeniu (milion megaohm lub więcej). Jednakże, przekaźniki kontaktronowe są zazwyczaj specyfikowane dla maksymalnej temperatury pracy 85°C. Nowe przekaźniki Coto serii 2970 Form-A i Form-C mogą pracować w wysokiej temperaturze. Ponieważ fizyka narzuca, że rezystancja cewki wzrośnie wraz z temperaturą, przekaźniki 2970 są specjalnie zaprojektowane dla zwiększenia mocy cewki w 125°C, zapewniając to, że kontaktrony zamykają się pewnie. To przewymiarowanie zapewnia długą żywotność przełączania i stabilną rezystancję styków w wysokich temperaturach. Ponadto, małe wymiary przekaźników i zintegrowana osłona magnetyczna umożliwiają gęste upakowanie w pobliżu gniazda DUT, co czyni je idealnymi do testowania IC o dużej prędkości i wysokiej liczbie pinów. Do tej pory brak przekaźników kontaktronowych klasy ATE przeznaczonych do pracy w wysokiej temperaturze skłaniał niektórych projektantów systemów ATE do stosowania przekaźników półprzewodnikowych (SSR).

Podczas gdy przekaźniki SSR mają tę zaletę, że pracują w oparciu o elementy półprzewodnikowe, to ich zalety w systemach ATE są mniej przekonujące, ze względu na trudny do spełnienia kompromis pomiędzy rezystancją i maksymalnym przełączanym napięciem, podatnością na uszkodzenia spowodowane wyładowaniami elektrostatycznymi i nadmiernymi wartościami obciążeń testowych oraz znacznie większym poziomem strat w stanie spoczynku. Praca w wysokiej temperaturze może również powodować problemy z niezawodnością, na przykład niestabilnością cieplną.

Podobnie jak wszystkie przekaźniki kontaktronowe Coto, każdy przekaźnik serii 2970 przechodzi przed wysyłką najbardziej gruntowne testy, w tym dwanaście różnych testów parametrycznych w zakresie statycznej i dynamicznej rezystancji styków, czasów i napięć załączania i zwalniania, rezystancji izolacji i innych.

Zapraszamy do zapoznania się z ofertą firmy Coto Technology

Coto RedRock

Coto Classic

Coto CotoMOS

Coto Mercury Relays

Pozostałe aktualności:

Firma Avalue Technology zaprezentowała ultracienkie panelowe komputery PC oparte na wydajnym procesorze Rockchip RK3576

Firma Avalue Technology zaprezentowała ultracienkie panelowe komputery...

Ultra cienkie komputery panelowe PC o przekątnej 21" APC-21WR6 oraz 23,8" APC-24WR6 firmy Avalue Technology dysponują...

poniedziałek, 2 czerwca, 2025 Więcej

HiperLCS-2 firmy Power Integrations zwiększa sprawność konwertera LLC zapewniając do 1650W ciągłej mocy wyjściowej

HiperLCS-2 firmy Power Integrations zwiększa sprawność konwertera LLC...

Chipset HiperLCS-2 firmy Power Integrations do przełączania offline LLC zapewnia teraz do 1650W ciągłej mocy...

czwartek, 29 maja, 2025 Więcej

AJCV150 moduł zasilania firmy ARCH Electronics zbudowany do zastosowań przemysłowych wymagających niewielkiej przestrzeni

AJCV150 moduł zasilania firmy ARCH Electronics zbudowany do zastosowań...

150W moduł zasilania AJCV150 firmy ARCH Electronics pokonuje te ograniczenia, oferując kompaktowe rozwiązanie o dużej...

poniedziałek, 26 maja, 2025 Więcej

Firma Microchip Technology wprowadza urządzenia PolarFire® Core FPGA oraz SoC FPGA

Firma Microchip Technology wprowadza urządzenia PolarFire® Core FPGA...

Firma Microchip Technology wprowadziła serię PolarFire® Core FPGA i SoC FPGA - zoptymalizowanych pod względem kosztów...

poniedziałek, 26 maja, 2025 Więcej

Zaprojektowany dla zastosowań Edge AI, panel FPC-21W42 firmy Avalue Technology oferuje wydajność i adaptowalność w różnych wymagających branżach

Zaprojektowany dla zastosowań Edge AI, panel FPC-21W42 firmy Avalue...

Avalue Technology Inc., światowy lider w dziedzinie rozwiązań do komputerów przemysłowych, wprowadził na rynek swój...

piątek, 23 maja, 2025 Więcej

Siemens EDA wprowadza do oferty wspomagane przez AI pakiety PADS Pro Essentials oraz Xpedition Standard

Siemens EDA wprowadza do oferty wspomagane przez AI pakiety PADS Pro...

Firma Siemens wprowadziła dwa nowe pakiety oprogramowania do projektowania PCB. Są to wspomagane przez AI PADS Pro...

czwartek, 22 maja, 2025 Więcej